

Project: Bullwinkle

By: *Gregory Hart*

© All Rights Reserved

*Proof That A Flying Squirrel is Bull
or
Rocket Squirrel vs. Balboa the Flying Squirrel*

The purpose of the experiment is to identify the point at which a flap of skin is adequate to accomplish genuine benefit for a regular squirrel during its evolution into a flying squirrel. The premise for the experiment is that there was a first mutation for a squirrel that consisted of excess skin at the armpits (or anywhere) and that this excess skin eventually evolved to form the completed wings of a flying squirrel. The experiment takes into consideration the "Laws of Evolution":

- 1) Changes occur randomly to each new generation
- 2) No two forms of life (> microscopic) are the exact same
- 3) Changes that increase the probability of survival are more probable to be passed on to future generations
- 4) Changes that decrease the probability of survival are less probable to be passed on to future generations
- 5) These changes create new and different forms of life

While following the Laws of Evolution, consideration must be given that mutations have a lesser probability of being passed down to future generations than do common or established traits. With this in mind, mutations are passed on when they create an advantage over not having the mutation. The advantage they create gives the animals with the mutation a higher probability to either survive or to produce more or stronger offspring. This advantage serves to eventually edge out the other animals without the mutation, with the eventual outcome to be that only the animals with the mutation have survived.

The experiment focuses on the first flap of skin mutation for a squirrel. Drawn into question is the concern that the first mutation might not be beneficial in a way that would serve the mutated squirrel to have an advantage over the squirrels without the mutation of the extra skin.

The expected conclusion is that the amount of skin necessary to introduce a benefit to the squirrel that would give it an advantage over the other squirrels is much larger than would be possible for a single mutation. Therefore, the focus of the experiment is on what the behaviors and gains would be for the squirrel which experiences the first mutation of extra skin, and not on complex learned behaviors.

The experiment performs a reverse engineering process of evolution using the rules of evolution that have been identified and accepted, thus identifying the steps that would occur during the process of a squirrel becoming modified to eventually have wings.

GIVENS:

- 1) Evolution does occur
- 2) There was a point in time when the ancestors of today's flying squirrels existed as squirrels without wings
- 3) The transition process for a squirrel to evolve wings involved an initial random mutation of an extra flap of skin of unknown size
- 4) The transition process for a squirrel to evolve wings involved the flap of skin (Given# 3) to grow in size over many generations of breeding
- 5) Flight is complicated, and requires very specific control of the angle of flight ("Angle of Attack") to make best use of the airlift and drag

- 6) For any animal to accomplish flight or even a lengthy glide, the animal must use learned behavior to continuously modify the angle of its wings that control its Angle of Attack and establish its necessary airlift and drag
- 7) When referring to a “non-modified” squirrel, we will be referring to a typical and “average” squirrel that does not have any additional skin growth.
- 8) Non-modified squirrels that jump from tree to tree will execute a positive 9° initial Angle of Attack (upward) and can complete jumps to distances as great as 4 meters horizontally, without needing to perform an incline change during its motion and with minimal descent. They accomplish this because their body shape is similar to a bullet in both proportionate weight and aerodynamic design.
- 9) A non-modified squirrel is able to survive a drop of up to 30 meters by employing its tail as a parachute.
- 10) The model of the non-modified squirrel we will be using has dimensions:
 - a. Body Length = 34.2 cm
 - b. Arm Spans tip-to-tip = 34.2 cm
 - c. Squirrel Weight = 0.43 kg
- 11) When referring to a “modified” squirrel, we will be referring to a typical and “average” Northern Flying Squirrel (*Glaucomys sabrinus*) that is outfitted with “wings” from additional skin growth beyond what non-modified squirrels have. When referring to a modified squirrel, reference will be made to the percentage of wing relative to the full wing span of today’s Northern Flying Squirrel.
- 12) A 100% modified squirrel will execute between a -5° initial Angle of Attack (downward) up to a positive 1° initial Angle of Attack (upward) and can complete jumps to distances as great as 90 meters horizontally. It accomplishes this by constantly performing changes to its flight inclination during its motion. They accomplish this because their body wing span creates a near perfect square, their bones are thinner, and their overall body is lighter. Flying squirrels show lengthening in bones of the lumbar vertebrae and forearm, whereas bones of the feet, hands, and distal vertebrae are reduced in length. Therefore, 100% modified squirrels are not well adapted for walking or running and must rely more heavily on their gliding abilities.
- 13) The model of the 100% modified squirrel we will be using has dimensions:
 - a. Body Length = 34.2 cm
 - b. Arm Spans tip-to-tip = 34.2 cm
 - c. Wing Area = 13.69 cm^2 (larger than Body multiplied by Arms)
 - d. Squirrel Weight = 0.14 kg
- 14) 100% modified squirrels accomplish long gliding distances by jumping off a branch at a negative degree Angle of Attack, and keeping their wings tightly tucked into their body. After free falling approximately 10 feet, they throw their wings out and catch air underneath them, thus providing lift. By maneuvering the angle of their head and body to point more or less upward or downward, they utilize this lift to propel forward. The formula that mathematically calculates forward propulsion is contingent on the force of propulsion generated from the air lift, and also the amount of drag that is created from the different angles.
- 15) The tail of the 100% modified squirrel contributes to maintaining a proper balance during flight. The tail has not been significantly modified in the evolutionary process from a non-modified squirrel to a 100% modified squirrel. Therefore, it is not considered in our mathematical calculations.
- 16) The evaluation of the 100% modified squirrel considers these squirrels to launch from a tree at heights of approximately 12 meters (40 feet). The non-modified squirrels typically jump at heights of approximately 4 meters (13 feet). The height increases relative to the percentage of

modification, because this is a learned behavior that could be easily learned by accident and that introduces a greater range to fall and thus make best use of gravity. This change of the launch height became necessary when evaluating the results, because when the height didn't increase, the addition of the wing was a negative for up to 52% modification in extremes, and up to 27% when given every conceivable consideration. Allowing the height to increase relative to the percentage of modification gave more advantage to disprove the original hypothesis, and was introduced to give the most amount of consideration to the disproof of the hypothesis.

- 17) Modifications to angles during the glide are not considered in this experiment because this learned behavior is not easily grasped, and therefore would not be an available resource to the first generations of mutations.
- 18) Environmental factors of wind, precipitation, falling objects, and predators are not considered in this experiment. All these factors would serve as a disadvantage to the modified squirrel's ability of horizontal gain. This is another advantage given to the disproof of the hypothesis.
- 19) How a flying squirrel achieves “flight”
 - a. A flying squirrel does not actually fly, it glides
 - b. The modern day Northern Flying Squirrel optimizes its glide by the following:
 - i. The squirrel climbs high up a tree
 - ii. The squirrel throws itself downward at an angle of approximately 5° descent. This approach is advantageous because it uses gravity to increase the speed of descent. Only because it has a wing does this become an advantage, as it uses the lift to propel itself upward or forward, depending on the angle of its wing. This is different from how a non-modified squirrel jumps, for which always jumps with an angle of ascent for the intent of optimizing forward propulsion for an object shaped as a bullet.
 - iii. After freefalling approximately 25% of the total distance, it expands its wings to capture air
 - iv. This capture resolves to lift the squirrel above its current height, sometimes resolving to become a height above where it originally jumped from
 - v. The capture of lift, combined with controlled manipulation of the wing's angle, resolve to create greater heights and forward propulsion
 - c. The benefits or losses from modifications to the “wing” can be mathematically calculated by creating engineering diagrams to represent the lift and resistance created by the introduction of wings. Other factors taken into consideration and set as constants instead of variables are the weight of the squirrel, the angle of ascent/descent at initial launch, and the distribution of wind resistance at differing wing angles while gliding. These constants were set to give the greatest advantage to accomplish vertical and horizontal gains.
 - d. Such diagrams would represent the cost of drag (resistance) combining this cost with the gain from lift to represent the overall gain or loss from the introduction of a wing apparatus at a particular size. The size is reflected as a relative percentage, relative to the current size of a “wing” for an “average” Northern Flying Squirrel.
 - e. Consideration must be given to the benefits of learned behavior to control the wings' angles and also to identify that an initial descent jump is required as opposed to an initial ascent jump. This difference in initial jump angle is needed to maximize gravity to capture lift that could only be appreciated from a winged apparatus, and would serve as detriment to a “bullet” formed device (non-modified squirrel).

THE EXPERIMENT:

(see statistics gathered in www.GHart.net/Project_Bullwinkle_Stats.pdf)

- 1) The experiment uses computer modeling to craft the aerodynamics of a flying squirrel and the mechanics of its glide. Using the same software approach that is used to design and build modern airplanes, the flight ability of a 100% modified squirrel was evaluated, and also the flight ability of a 10% modified squirrel, a 20% modified squirrel, a 21% modified squirrel, and a 30% modified squirrel.
- 2) The graphed numbers represent 4 columns that are consistent to all the graphs:
 - a. Angle of Attack (a)
 - b. Lift achieved (CL)
 - c. Drag introduced (CD)
 - d. Ratio of Lift to Drag (L/D)
- 3) It was calculated and confirmed that a non-modified squirrel can easily perform leaps and jumps that accomplish a horizontal gain of 3.32 meters (10 feet).
- 4) It was calculated and confirmed that a 100% modified squirrel can accomplish horizontal gains while gliding up to 89.3 meters (293 feet).
- 5) It was calculated and confirmed that a 10% modified squirrel can accomplish horizontal leaps and jumps that would amount to less than one meter (3 feet). This loss of distance is the result of drag produced by the 10% modification of additional wing. No actual glide is accomplished.
- 6) It was calculated and confirmed that a 20% modified squirrel can accomplish horizontal gains while gliding that would amount to 3.57 meters (11 feet).
- 7) It was calculated and confirmed that a 21% modified squirrel can accomplish horizontal gains while gliding that would amount to 4.56 meters (15 feet).
- 8) It was calculated and confirmed that a 30% modified squirrel can accomplish horizontal gains while gliding that would amount to 8.84 meters (29 feet).

ANALYSIS OF DATA:

The data returned demonstrates that the initial addition of skin to create the beginning formation of a wing will result in reducing the total horizontal distance gained. It is not until greater than 19% modification to the squirrel when the horizontal distance begins to increase. It increases aggressively after this point, resulting in a gain of almost 3 times the distance at 30% modification.

SUMMARY:

If we are willing to:

- decrease the weight of the squirrel from 0.43 kg to be only 0.35 kg
- alter the angle of attack from being a positive angle to instead be a negative angle
- introduce learned behavior of extreme complexity that accomplishes the task of balancing airlift by altering the angle of attack while in flight

With all these considerations provided without question or explanation, it will still require an addition of 19% formation/mutation of the skin of the wing that currently exists for a 100% modified flying squirrel before any appreciable gain would be realized. At 10% formation/mutation the squirrel is pitifully handicapped, both in walking and jumping.

If these factors are not taken into consideration, it will then require an addition of 51% formation/mutation of the skin of the wing that currently exists for a 100% modified flying squirrel before any appreciable gain would be realized.

SYNOPSIS:

Evolution occurs only to ensure that the least bad designs survive. The experiment has proven that the size of skin necessary and/or other bodily modifications or behavior modifications necessary to impart genuine benefit is too large to have reasonably occurred in a single mutation. When considering the amount of skin for 19% of the currently existing wing, such a large amount of skin would not occur as a first mutation.

If the first modification does not produce an advantage, then the squirrel with such modification would not have a greater probability to pass it on to future generations. The fact that the extra skin decreases performance of horizontal gains also confirms that the mutation would not get passed down because it decreases the probability for survival or fitness to reproduce. Further demonstration of this is that the introduction of any wing growth serves to decrease performance for running or climbing. Running and climbing are the most prime traits for survival of squirrels, the traits that provide an advantage over other animals of their eco-nitch.

It is accepted the fact that skin could have gradually grown over time. The dispute is in the original formation of such skin. The experiment has demonstrated that there must have been an additional driving factor creating the first modification of skin growth or most importantly, to allow the growth to persist and be passed on to future generations.

Because it cannot be possible for a random mutation to accomplish the necessary steps for a non-modified squirrel to become a modified squirrel, then it must be accepted that the mutation was not random. If the mutation which caused the evolution of the squirrel to a flying squirrel was not a random mutation, the only other possibility is that it was a controlled mutation.

If mutations that resolve to become evolutionary changes are controlled, then there must be a source for that control. The source of control for the evolutionary process must have a level of intelligence capable of looking forward into the future and identifying how to best satisfy needs. This intelligence must therefore have a degree of free will and a consciousness.

– END OF EXPERIMENT –

PROJECT: BULLWINKLE

ABSTRACT

Analyzing the flight characteristics of a Northern Flying Squirrel

By MK Designs For Database Engineers, Inc.

Contents

ORIGINAL SCOPE	2
INITIAL EXPERIMENTATION	3
SCENARIO 1:	3
SCENARIO 2:	4
SCENARIO 3:	4
SCENARIO 4:	5
CONCLUSION	5
REFERENCES	6
APPENDIX	6

ORIGINAL SCOPE

PROJECT BULLWINKLE (proof that a flying squirrel is bull):

This experiment is focused more on the math than making a cool video. This is for scientific proof, and therefore does not have to be necessarily "pretty", as long as it is scientifically/mathematically accurate.

The highest purpose of the experiment is to identify the point at which a flap of skin is large enough to accomplish genuine benefit. Genuine enough to argue that it can increase the probability of survival enough to be a means of out-competing other squirrels and thus proven able to have occurred through natural selection.

My hypothesis is that such can NOT be proven, and we will reach a point where we conclude that the size of skin necessary to impart genuine benefit is too large to have reasonably occurred in a single mutation. I accept the fact that skin could have gradually grown over time. My dispute is in the original formation of it. My best guess is that this experiment will flush out the reality that there must have been an additional driving factor to create the first beginnings of a wing, more than a random mutation that was favorable.

My hypothesis is that benefit will not be accomplished until an amount of skin is added that is too large of a change to have occurred as a single mutation. This would prove that natural selection is NOT the only means of evolution, and that there must be a driving "intelligence" to the formula/program, that drives the direction of evolution.

Base Experiment:

Take a model of a regular squirrel, and apply a force of propulsion. This force can be derived by (as one possibility, please feel free to choose any reasonable method) taking the distance a current flying squirrel can launch and glide which is 30 meters, and

1. Building a digital computer model of such flying squirrel, and
2. Identify the amount of force needed to propel the Flying Squirrel 30 meters total distance (FYI: maximum recorded glide = 90 meters, average glide is 10 -15 meters) before it has fallen as described below.
3. Measure how far the digital squirrel model can reach before it starts its descent to the ground. Allow a 1 meter margin of falling before establishing the stop point (i.e. the squirrel starts at height X, propels forward, and when it has fallen to height X - 1 meter, identify that marker as the distance of glide achieved).
4. Start adding wings to the squirrel at 3 square cm increments. Eventually, additional modifications may be needed, such as elongation of the arms to accommodate a wider wing span while also allowing usage of its hands.
5. When the squirrel's total glide flight has become 1 or more meters longer in distance than it was without any wing addition (new flaps of skin), take one more measurement, and then end the experiment.

- Total Torso + Wingspan (new skin flaps) + Head + Tail of flying squirrel = approximately 800 square cm (45 cm head to tail X 30 cm wing span width).
- Initial wingspan = 0 square centimeters
- Initial span of Torso + Tail + Head + Appendages = approximately 350 square cm
- Wings will increase mostly between body and torso, but some also between hind legs and tail region, and also some between upper part of arm and neck (see picture from earlier)

INITIAL EXPERIMENTATION

During the early phases of calculations, the squirrel conditions were set at sea level and an Angle Of Attack (AoA) of 0 deg. Initially it was theorized that a squirrel would push off a branch and maintain a 0 deg AoA which would allow it to glide. The airfoil of its wings were assumed to be a flat plate. In reality, a squirrel's wings are not rigid structures as an aircraft wing is. They are elongated parts of its skin which act as wings, since they are skin pieces they will have a factor of elasticity involved. In order to keep calculations simple, it was assumed that the squirrels' wings are that of similar to an aircraft's, rigid bodies.

However, after initial calculations it was clear that it would not be possible for the squirrel to glide at a 0 deg initial angle, a flat plate wing and no elasticity. The following reasons were ascertained:

1. The squirrels launch velocity of 17.21 ft/s is not enough for its wings to generate enough lift to compensate for its weight.
2. The flat plate airfoil will not generate lift at a 0 deg angle of attack.
3. The squirrels' wings will act as air brakes instead of wings if a flat plate is used.
4. The launch velocity is too low and the wing area is too small.

To overcome the mentioned problems, the following solution was theorized.

To overcome the lack of an elasticity factor, the squirrels' wings will be using a LIEBECK LA5055 airfoil. According to research from the Journal of Mammalogy, Vol 33, Issue 2, this airfoil closely mimics the flight characteristics of a flying squirrel.

The following scenarios will take different percentages of wing area of a flying squirrel to and ascertain the minimum wing area needed for flight at a 0-deg AoA.

SCENARIO 1:

The squirrel's wing shall be set at 0-deg AoA and the squirrel will use a push off maneuver to launch from a branch which will allow it to glide. The following data was calculated.

From the above data the squirrel is able to fly at a distance of 99 meters with a launch height of 14 meters. At 0 deg AoA the squirrel will be generating a lift of 0.299 lbs, noting that weight of the squirrel is only 0.309 lbs the squirrel is able to achieve generate enough lift within a few moments of drop to compensate its weight. With a L/D ratio on the airfoil being 16.62 the squirrel is able to generate 16 times more lift than drag. The drag force being only 0.018. The sink rate of the squirrel being 0.1912 m/s the sink rate is the rate at which the squirrel is losing its altitude (vertical height). The sink rate is minuscule.

The calculations might seem a bit abnormal at first considering that a mammal such as the flying squirrel has such a high efficiency of lift.

During the calculations of drag the skin friction coefficient was taken into consideration. The skin friction coefficient accounts for the friction or drag that the surface of the wing generates when the aircraft is flying. Here, on the squirrel the skin friction coefficient is unknown. The skin friction coefficient can only be ascertained through wind-tunnel experimentation or flying squirrel observations. Therefore, the glide distance of squirrel might seem high however, they are correct given the skin friction coefficient.

SCENARIO 2:

The squirrels' wing shall be set at 0-deg AoA and the squirrel will use a push of maneuver to launch from a branch which will allow it to glide. The squirrel will only have 10% of its full wing area. The flowing data was calculated:

At 10% wing the squirrel is generating 0.0203 lbs of lift which when compared to the weight of the squirrel at 0.309 lbs is not enough for the squirrel to fly. However, the squirrel can generate more lift by diving down for a few meters to gain enough velocity for its wing to generate enough lift. But with only 10% of its regular wing area that also is not possible. Taking the sink rate into account the squirrel will need to drop more than 45 meters to generate the needed velocity. Therefore, a squirrel with a wing area 10% of a regular flying squirrel will not be able to fly.

An object falling for more than 12 seconds or 45 meters vertically down will reach terminal velocity. Terminal velocity is when a falling object will not gain any velocity, as in it will no longer accelerate. Meaning if a flying squirrel cannot generate the needed velocity by dropping 45 meters, it never will.

SCENARIO 3:

The squirrels' wing shall be set at 0-deg AoA and the squirrel will use a push of maneuver to launch from a branch which will allow it to glide. The squirrel will only have 20% of its full wing area. The flowing data was calculated:

At 20% wing the squirrel is generating 0.0102 lbs of lift which when compared to the weight of the squirrel at 0.309 lbs is not enough for the squirrel to fly. However, the squirrel can generate more lift by diving down for a few meters to gain enough velocity for its wing to generate enough lift. But with only 20% of its regular wing area that is not even possible. Taking the sink rate into account the squirrel will need to drop more than 35 meters to generate the needed velocity. Therefore, a squirrel with a wing area 20% of a regular flying squirrel will not be able to fly.

SCENARIO 4:

The squirrels' wing shall be set at 0-deg AoA and the squirrel will use a push of maneuver to launch from a branch which will allow it to glide. The squirrel will only have 52% of its full wing area. The following data was calculated:

At 52% wing the squirrel is generating 0.182 lbs of lift which when compared to the weight of the squirrel at 0.309 lbs is enough for the squirrel to fly. The squirrel can generate more lift by diving down for a few meters to gain enough velocity for its wing to generate enough lift. After dropping for 1 second the squirrel will have generated 9.81 m/s of vertical velocity after which a pitching angle of 3.5-deg will allow the squirrel to generate 0.325 lbs of lift, which will overcome its weight.

CONCLUSION

A flying squirrel will need at least 52% of its wing area to generate the necessary lift to overcome its weight, and gain horizontal distance relative to a launch without any wing addition. The squirrel will need to first drop at least 1 m then pitch at 3.5-deg to fly. This theory is proven correct when we look at the research done in the Journal Of Mammalogy, Vol 83, Issue, 2 1 May, 2002, Pages 553-562. The graph below shows the common flight paths taken by flying squirrels. According to the graph, a flying squirrel will first drop about 2-3 meters first to generate enough velocity for its wings to function then pitch up to generate enough lift for it to fly.

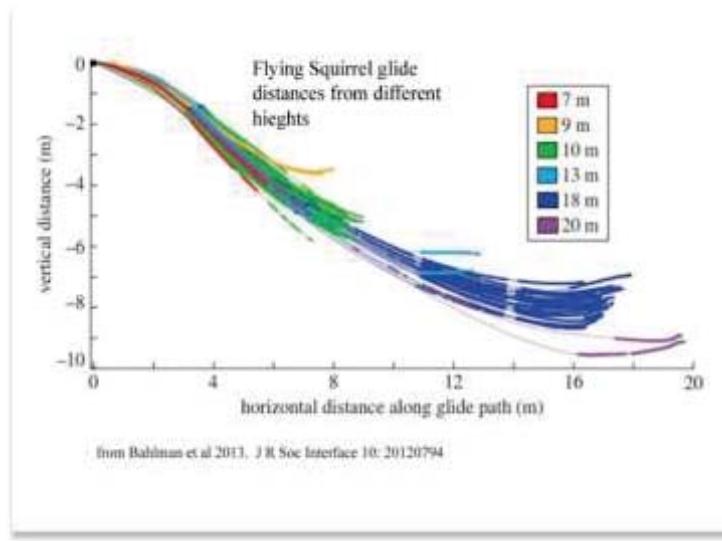


Figure 1. Squirrel Flight Paths

REFERENCES

1. Brian J. Stafford Richard W. Thorington, Jr. Takeo Kawamichi, Journal of Mammalogy, Volume 83, Issue 2, 1 May 2002, Pages 553–562,
[https://doi.org/10.1644/1545-1542\(2002\)083<0553:GBOJGF>2.0.CO;2](https://doi.org/10.1644/1545-1542(2002)083<0553:GBOJGF>2.0.CO;2)

APPENDIX

Figure 1. Squirrel Flight Paths..... 5

Aerodynamic Data

Unit
Dimensions
Wing chord length
S
Wing Span
Aspect Ratio (AR)
Spanwise Weight
Environment (Red Sea) (a)
Density
Free Stream Velocity
Dynamic Pressure
Temperature
Pressure
Froude Number (Froude = U/c)

0.32 m
0.42 m
0.139 m²
1.4760757272
10.2 m
0.2738 kg
0.2738 kg
3.2440E-07
0.055904
0.05608542
5.8E-05
5.8E-05
5.8E-05
0.1224 kg/m³
1.796E-05
10.3825 kg
10.3825 kg
9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

5.8E-05

0.1224 kg/m³

1.796E-05

10.3825 kg

10.3825 kg

9.807 m/s²

Area flying (carries twice a square shaped wing)

More wing = more drag

Winged area

0.2738 m²

0.055904

0.05608542

5.8E-05

5.8E-05

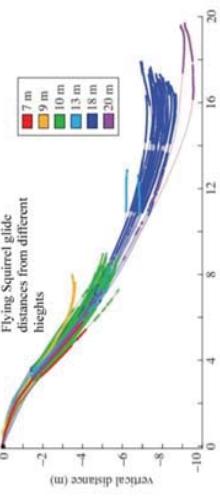
5.8E-05

0.1224 kg/m³

NOTES

Geometric Dimensions	Magnitude	Unit
Length	-	-
Wing Chord Length	0.342 m	
S	0.342 m	
Wing Span	0 m ²	Area (flying squirrels have a square shaped wing)
Squirrel Weight	0.42 kg	(MODIFY WING SPAN TO ALTER WING AREA)
$\% \text{ of wing evolved}$	0%	Wetted area
Environment (Std. Sea Level)		
Density	1.225 kg/m ³	
Free Stream Velocity	-	m/s
Dynamic Viscosity	1.79E-05 Pascal*s	
Temperature	288.15 K	
Pressure	101.325 kPa	
g	9.807 m/s ²	

Aerodynamics	Magnitude	Unit
FLIGHT CONDITION	13.12336 ft	
Altitude (launch height in ft)	13.12336 ft	
Airspeed (KTAS)	10.2 Knots	
Airspeed	17.2176 ft/s	
Mach Number	0.015424512	
Density ratio	0.999616024	
Air density	0.002377087 slugs/ft ³	
Outside Air Temperature	518.6531972 K	
Viscosity (Sutherland's formula)	3.74457E-07 lbfs/ft	
Reynolds Number (Re)	3993775.861	
Launch Height	4 m	
Launch Velocity (V ₀)	5.25 m/s	
Launch Acceleration	0.3 m/s ²	
Launch Force	0.126 kg*m/s ²	


Lift

Max L/D	-0.5	0	0
Max glide	0	0	0
i_w	0 m	Incidence of the wing	
α_{0L}	0 deg		
a_0	-4.5 deg		
α_{111}	1 deg		
e_w	1 -	span efficiency of the wing	
AR	0 -	Aspect ratio CAUSE OF LOW CL	
λ_w	0 -	Taper ratio	
a_w	0 / deg	Clalpha of squirrel	
CLO	0	Zero lift coefficient	

Drag

$C_{d, \text{visc}}$	0.006	-	Miscellaneous drag
Location of maximum thickness ($(x/c)_{\text{max}}$)	0.5		
Thickness ratio (t/c)	0.15		
Skin friction coefficient	0.003539606	ASSUMPTION: $c_f = \frac{0.074}{Re^{0.2}}$	
Interference Factor	1		
Form Factor	0.77823111		
Max thickness sweep angle	0	VERY HIGH	
Induced drag constant (K)	0	Minimum drag coefficient	
$C_{d, \text{min}}$	0		
$Range$	3.32 m	No glide, just jump	
Range	14	0	0

Non-Modified

from Bahrami et al 2013. J R Soc Interface 10: 20120794

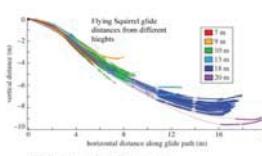
from Bahrami et al 2013. J R Soc Interface 10: 20120794

	Magnitude	Unit
Geometric Dimensions		
Length	0.342 m	
Wing Chord Length	0.342 m	
S	0.00116964 m ²	Area (flying squirrels have a square shaped wing)
% of wing evolved	10%	
Wing Span	0.0342 m	[MODIFY WING SPAN TO ALTER WING AREA]
Surface Weight	0.39 kg	
Surf.	0.00233928 m ²	
Environment (Std.Sea Level)		
Density	1.225 kg/m ³	
Free Stream Velocity	10.2 m/s	
Dynamic Viscosity	1.79E-05 Pascal*s	
Temperature	288.15 K	
Pressure	101.325 kPa	
g	9.807 m/s ²	

Aerodynamics

FLIGHT CONDITION	16,40420 ft
Airspeed (KTAS)	10.2 Knots
Aspect Ratio	17.25 m ² /ft ²
Mach Number	0.015424686
Density ratio	0.999520048
Air density	0.002376859 slugs/ft ³
Outside Air Temperature	518.6414965 *R
Viscosity (Sutherland's formula)	3.74451E-07 lbs/ft
Reynolds Number (Re)	3993464.041
Launch Height	5 m
Launch Velocity (V0)	5.25 m/s
Launch Acceleration	0.3 m/s ²
Launch Force	0.117 kg/m ² s ²

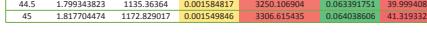
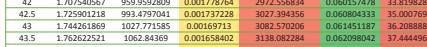
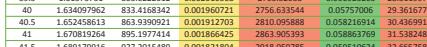
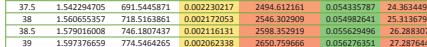
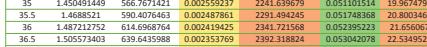
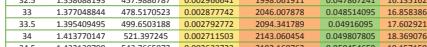
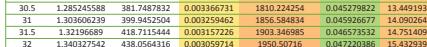
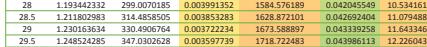
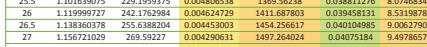
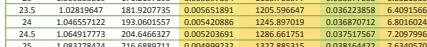
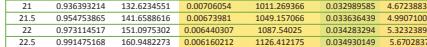
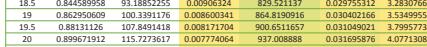
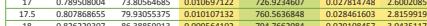
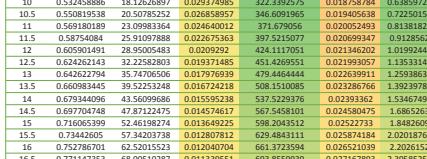
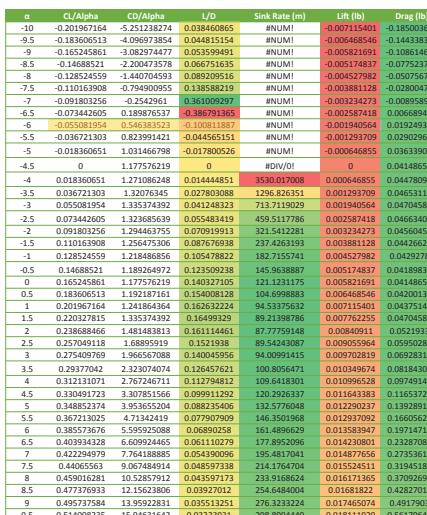
Lift


Max L/D	
Max glide	0 m
lw	0 deg
az	-4.5 deg
z0	0.111 / deg
ew	1 - span efficiency of the wing
AR	1 - aspect ratio
Aw	0 - taper ratio
az	0.036721303 / deg
CL0	0.165245861

Drag

CD _{base}	0.006 -	Miscellaneous drag
Location of maximum thickness (x/c)max	0.5	
Thickness ratio (t/c)	0.15	
Skin Friction coefficient	0.005359662	ASSUMPTION $c_f = \frac{0.074}{Re^{0.2}}$
Interference Factor	1	
Form Factor	0.778232691	
Max thickness sweep angle	0	
Induced drag constant (K)	0.318309886	VERY HIGH
CD _{proj}	1.177576219	Minimum drag coefficient
Range	0.824966452 m	

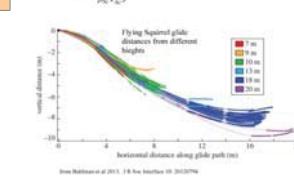
NOTES
The Liebeck airfoil ($C_L = 3.06$ and $C_D = 0.005$), close example of the aerodynamics of *Glaucomys sabrinus*.

















$$\text{From Equation (1.45), } C_L = \frac{2\pi}{(1 + \frac{2}{AR})}$$

From Bahlmann et al 2011. J. of the Royal Society Interface 9(81):2011076

10% Modified

LIFT GENERATED BY WING



Geometric Dimensions	Magnitude	Unit
Length	0.342 m	
Wing Chord Length	0.342 m	
S	0.00467856 m ²	
% of wing evolved	20%	
Wing Span	0.0684 m	[MODIFY WING SPAN TO ALTER WING AREA]
Squirt Weight	0.36 kg	
Swt	0.00935712 m ²	Wetted area
Environment (Std.Sea Level)		
Density	1.225 kg/m ³	
Free Stream Velocity	1.795e-05 Pascal [*]	
Dynamic Viscosity	288.15 K	
Temperature	101.325 kPa	
Pressure	9.807 m/s ²	
g		
Aerodynamics		
FLIGHT CONDITION		
Altitude (Launch height in ft)	19.68504 ft	
Airspeed (KTAS)	10.2 Knots	
Airspeed	17.2176 ft/s	
Mach Number	0.01542486	
Density ratio	0.999424079	
Altitude		
Outside Air Temperature	5.1842977954 * ^t	
Viscosity (Gaster's formula)	3.74446157 lb/s/ft ²	
Reynolds Number (Re)	3993152.138	
Launch Height	8 m	
Launch Velocity (V0)	5.25 m/s	
Launch Acceleration	0.3 m/s ²	
Launch Force	0.108 kg/m ² s ²	
lift		
Max L/D		
MAX glide	0 m	
iw	0 deg	Incidence of the wing
$\frac{d\alpha}{dt}$	-4.5 deg	
$\frac{d\alpha}{dt}$	0.111 /deg	
ϵ_w	1 -	span efficiency of the wing
AR	1 -	Aspect ratio
λ_w	0 -	Taper ratio
α_w	0.036721303 / deg	Clalpha of squirrel
CL0	0.165245861	Zero lift coefficient
Drag		
C _d	0.006 -	Miscellaneous drag
Location of maximum thickness (x/c)max	0.5	
Thickness ratio (t/c)	0.15	
Skin friction coefficient	0.003539717	ASSUMPTION
Interference Factor	1	
Form Factor	0.778234271	
Max thickness sweep angle	0	
Induced drag constant (K)	0.318098866	VERY HIGH
C _d min	0.294399251	Minimum drag coefficient
Range		
Range	3.565057397 m	

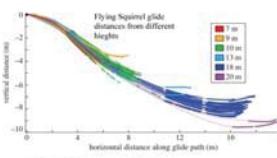
NOTES
The Liebeck aerofoil ($C_L = 3.06$ and $C_D = 0.005$), close example of the aerodynamics of *Glaucostomus sabrinus*

$$C_{L0} = \frac{2\pi}{(1 + \frac{2}{AR})}$$

$$C_D = \frac{2W}{\rho_0 V_{\infty}^2 S}$$

20% Modified

LIFT GENERATED BY WING


α	CL/Alpha	CD/Alpha	1/D	Sink Rate (m)	Lift	Drag (lb)
-10	-0.203967164	-6.134015241	0.037923621	#NUM!	#REF!	-0.432195317
-9	-0.183606513	-4.980150821	0.036867661	#NUM!	#REF!	-0.350872541
-8	-0.164885521	-3.083605046	0.047633546	#NUM!	#REF!	-0.217256132
-7	-0.146885521	-2.32388156	0.055305985	#NUM!	#REF!	-0.163727216
-6	-0.126524586	-1.6931931861	0.067070807	#NUM!	#REF!	-0.11825337
-5	-0.1091801256	-1.374730568	0.08070807	#NUM!	#REF!	-0.07307555
-4	-0.091836051	-0.6931930043	0.105931861	#NUM!	#REF!	-0.0448445927
-3	-0.074424605	-0.336793444	0.136358177	#NUM!	#REF!	-0.022728513
-2	-0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
-1.5	-0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
-1	-0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	-0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
-4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
-3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
-3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
-2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
-2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
-1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
-1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31859208
2.5	0.073842465	0.440508672	0.166722269	108.1312579	#REF!	0.31035868
2	0.091803256	0.411268787	0.223209836	72.23979447	#REF!	0.028976882
1.5	0.110161906	0.73298338	0.295105958	49.879594	#REF!	0.026300436
1	0.128852459	0.35309689	0.38330083	35.55380466	#REF!	0.02362399
0	0.147508125	0.294399251	0	#DIV/0!	#REF!	0.020741664
4	0.018360651	0.387090928	0.073323333	761.7578701	#REF!	0.277299838
3.5	0.036721303	0.437586483	0.083917817	303.8125926	#REF!	0.300829806
3	0.055081954	0.452179425	0.121809525	170.8964271	#REF!	0.31

Geometric Dimensions	Magnitude	Unit
Length	0.342 m	
Wing Chord Length	0.342 m	
S	0.008526676 m ²	
% of wing evolved	27%	
Wing Span	0.09234 m	
Squreil Weight	0.35 kg	
Environment (Std.Sea Level)	0.017053331 m ²	
Density	1.225 kg/m ³	
Free Stream Velocity	17.2176 ft/s	
Dynamic Viscosity	1.79E-05 Pascal*s	
Temperature	288.15 K	
Pressure	101.325 kPa	
g	9.807 m/s ²	

Aerodynamics	
FLIGHT CONDITION	
Altitude (launch height in ft)	22.96588 ft
Airspeed (KTAS)	10.2 Knots
Airspeed	17.2176 ft/s
Model number	0.003376402
Density ratio	0.99938317
Air density	518.61809517 kg/m ³
Outside Air Temperature	3.74437E-07 lbf.s/ft
Viscosity (Sutherland's formula)	3992840.254
Reynolds Number (Re)	7 m
Launch Height	5.25 m/s
Launch Velocity (V0)	0.3 m/s ²
Launch Acceleration	0.105 kg/m/s ²
Launch Force	0.003376402 slugs/ft ³
Lift	
Max L/D	0 m
Max glide	0 deg
Incidence of the wing	
q _{sl}	-4.5 deg
q _{ai}	0.111 deg
epsilon_w	1 - span efficiency of the wing
AR	1 - Aspect ratio
lambda_w	0 - Taper ratio
alpha_w	0.036721303 / deg
CL0	0.165245861
Drag	
C _{drag}	0.006 - Miscellaneous drag
Location of maximum thickness (l/c)max	0.5
Thickness ratio (l/c)	0.15
Skin Friction coefficient	0.003539772
Assumption	$C_d = \frac{0.074}{Re^{0.2}}$
Interference Factor	1
Form Factor	0.778235851
Max thickness sweep angle	0
Induced drag constant (K)	0.318309886
Ca _{range}	VERY HIGH
Range	0.161538792
	Minimum drag coefficient

NOTES
The Liebeck aerofoil ($C_l = 3.06$ and $C_d = 0.005$), close example of the aerodynamics of <i>Glaucomys sabrinus</i> .

$$C_{L\alpha} = \frac{2\pi}{(1 + \frac{q}{AR})} \frac{C_L}{\rho_w V_{\infty}^2}$$

From Baldwin et al 2013. J. R. Soc. Interface 10: 20120794

27% Modified

LIFT GENERATED BY WING

q	CL/Alpha	CD/Alpha	L/D	Sink Rate (m)	Lift (lb)	Drag (lb)
-10	-0.20197	-6.26728	0.03226	#NUM!	-0.019207893	0.059603322
-9.5	-0.18361	-5.11301	0.03591	#NUM!	-0.017461721	0.048658015
-9	-0.16525	-4.09901	0.040314	#NUM!	-0.015715549	0.0389632581
-8.5	-0.14689	-3.21651	0.045666	#NUM!	-0.013969376	0.030503183
-8	-0.12852	-2.45674	0.052315	#NUM!	-0.012233204	0.0233646085
-7.5	-0.11016	-1.81094	0.060832	#NUM!	-0.010477032	0.017227551
-7	-0.0918	-1.27033	0.072267	#NUM!	-0.00873086	0.012081387
-6.5	-0.07344	-0.82616	0.088896	#NUM!	-0.006984688	0.0078512136
-6	-0.05508	-0.46965	0.117282	#NUM!	-0.005238516	0.0044665982
-5.5	-0.03672	-0.19205	0.191211	#NUM!	-0.003492344	0.002646345
-5	-0.01836	0.015429	-3.18996	#NUM!	-0.001746172	0.001467396
-4.5	0	0.161539	0	#DIV/0!	0	0.015362991
-4	0.018361	0.255049	0.071989	31.0654504	0.001746172	0.0014256173
-3.5	0.036721	0.304726	0.120509	182.0893087	0.003492344	0.028906875
-3	0.055082	0.393377	0.172488	103.8693008	0.005238516	0.030370235
-2.5	0.073443	0.307468	0.238723	64.95965196	0.006984688	0.029258587
-2	0.091803	0.278426	0.329722	42.4896377	0.00873086	0.026479498
-1.5	0.110164	0.204038	0.45818	27.55004918	0.010477032	0.028666113
-1	0.128525	0.202449	0.634848	18.47521041	0.01223204	0.0261953758
-0.5	0.146881	0.173228	0.847932	12.539003493	0.013693676	0.016474639
0	0.161539	0.153539	10.16545056	10.165450549	0.015362991	0.015362991
0.5	0.18361	0.134094	8.0490312	8.049031212	0.01431097	0.01431097
1	0.201967	0.125327	6.894345	6.894345	0.01307087	0.01307087
1.5	0.220328	0.139137	6.089054	12.98166326	0.020594065	0.0174157053
2	0.238688	0.165446	5.151816	16.78319073	0.022702337	0.024455853
2.5	0.257049	0.172522	3.8199	21.7162935	0.024464409	0.026395776
3	0.27545	0.195053	0.289743	27.6530592	0.026195281	0.030939208
3.5	0.29377	0.1307037	0.224761	34.51657431	0.027938753	0.124304652
4	0.310492	0.291814	0.144205	50.7213183	0.031431097	0.21796077
4.5	0.329652	0.293618	0.118753	59.0493919	0.033177269	0.279379311
5	0.348852	0.307618	0.08153	59.0493919	0.034923441	0.316364048
5.5	0.367213	0.369738	0.099317	69.8666282	0.036923441	0.351636408
6	0.38574	0.459888	0.081884	80.45313207	0.036660613	0.435565807
6.5	0.403934	0.5593887	0.072211	91.62195761	0.038415785	0.520201241
7	0.422295	0.6748151	0.062579	103.3981964	0.040161957	0.641776448
7.5	0.440656	0.8051447	0.05473	115.7382731	0.041908129	0.765725162
8	0.459016	0.952542	0.048254	128.6193931	0.043654302	0.904681119
8.5	0.477358	1.094119	0.038301	155.9249472	0.047146546	1.210949705
9	0.495738	12.941919	0.038301	170.3131656	0.048892818	1.499129981
9.5	0.514098	14.992038	0.034433	170.3131656	0.048892818	1.621725209
10	0.532459	17.11023	0.031119	185.1734739	0.05063899	1.751530099
10.5	0.55082	19.49182	0.028525	200.888322	0.052385162	1.853735029
11	0.56931	22.0838	0.025774	216.2474933	0.054133344	2.100258178
11.5	0.587541	24.89494	0.023601	232.4374155	0.055877506	2.36760944
12	0.605091	27.93402	0.02169	249.0476141	0.057626378	2.656537832
12.5	0.624262	31.20979	0.020002	266.0678348	0.05936985	2.986177089
13	0.642623	34.73103	0.018503	283.488511	0.061116022	3.230306049
13.5	0.660948	38.5065	0.017164	301.306959	0.062682194	3.621231434
14	0.679344	42.54496	0.015968	319.4959986	0.064608366	4.046197407
14.5	0.697944	46.61519	0.014819	338.4959982	0.066483056	4.461748242
15	0.716505	54.44615	0.013819	358.4959982	0.068360875	4.877417444
15.5	0.734426	63.6326	0.013039	376.3038967	0.069846882	5.356299898
16	0.75287	61.50412	0.012234	395.9572546	0.071593055	5.842989912
16.5	0.771147	66.98807	0.011512	415.9583812	0.073339227	6.37053076
17	0.789058	72.78961	0.010846	436.301395	0.07505399	6.922585728
17.5	0.807869	78.91452	0.010237	456.9806175	0.076805912	7.505089102
18	0.826229	85.37255	0.009678	479.9906403	0.078577743	8.119274434
18.5	0.84458	92.17249	0.009163	499.3263046	0.080332915	8.65957546
19	0.862951	99.32308	0.008688	520.9268333	0.082070087	9.446025916
19.5	0.881311	106.83331	0.008249	542.9550641	0.083816259	10.16025954
20	0.8989672	114.71113	0.007843	565.238935	0.0858562431	10.90951006
20.5	0.918033	122.9665	0.007465	587.8299699	0.087308603	11.69461122
21	0.936393	131.6074	0.007115	610.7240174	0.089054775	12.163967575
21.5	0.954761	140.34202	0.006805	638.7240174	0.090747741	12.674017444
22	0.973115	150.0815	0.006484	657.4053472	0.092547119	14.27335588
22.5	0.991475	159.9322	0.006199	681.1831004	0.094239291	15.21019965
23	1.009836	170.2037	0.005933	705.2527899	0.096039463	16.18705733
23.5	1.028196	180.9047	0.005684	729.609482	0.097785635	17.20470776
24	1.046557	192.0441	0.005455	754.2387312	0.099531807	18.26417098
24.5	1.064918	203.6306	0.005253	779.1497514	0.10127798	19.36609172
25	1.083278	215.6729	0.005023	804.3360321	0.103024152	20.51136673
25.5	1.101639	228.1799	0.004828	829.7942211	0.104770324	21.70982972
26	1.12	241.1603	0.004644	855.5214219	0.106516496	22.93531445
26.5	1.13831	254.6228	0.004471	881.51828	0.108262688	24.15265464
27	1.156721	268.5762	0.004037	907.7717207	0.110008824	25.54268404
27.5	1.175082	281.4025	0.003815	932.991201	0.112509512	26.933637307
28	1.193425	297.4981	0.003565	961.05245939	0.114807374	30.480737
28.5	1.211803	313.45698	0.0030865	988.0973113	0.115247756	29.01224479
29	1.230164	320.4746	0.003734	1015.5032382	0.116993328	31.134683635
29.5	1.248524	346.0142	0.003603	1043.918763	0.1187397	32.90734978
30	1.266885	361.0973	0.003489	1070.703755	0.12048572	34.5320284
30.5	1.285246	380.7327	0.003376	1098.732732	0.12223044	36.20922125
31	1.303696	398.9292	0.003268	1127.071151	0.123978216	37.939778774
31.5	1.321967	417.6955	0.003165	1155.529281	0.125724388	39.7252906
32	1.340328	437.40404	0.003067	1184.287668	0.12747056	41.56430594
32.5	1.358688	456.9726	0.002973	1213.284128	0.129216733	43.45994311
33	1.377049	477.5011	0.002884	1242.516887	0.130950905	45.41227431
33.5	1.395409	496.6343	0.002798	1271.983977	0.13270977	47.42213328
34	1.41377	520.3812	0.002717	1301.683593	0.134455249	49.49035375
34.5						

Geometric Dimensions	Magnitude	Unit
Length	0.342 m	
Wing Chord Length	0.342 m	
S	0.01052676 m ²	
% of wing evolved	30%	Area (flying squirrels have a square shaped wing)
Wing Span	0.1026 m	(MODIFY WING SPAN TO ALTER WING AREA)
Squreil Weight	0.33 kg	

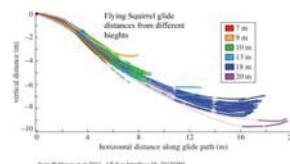
Environment (Std.Sea Level)

Density	1.225 kg/m ³
Free Stream Velocity	m/s
Dynamic Viscosity	1.70E-05 Pascal*s
Temperature	288.15 K
Pressure	101.325 kPa
g	9.807 m/s ²

Aerodynamics

FLIGHT CONDITION

Altitude (launch height in ft)	22.96588 ft
Airspeed (KTAS)	10.2 Knots
Airspeed	17.2176 ft/s
Model number	0.001000000000000001
Density ratio	0.99938317
Air density	0.002376402 slugs/ft ³
Outside Air Temperature	518.6180951 °R
Viscosity (Sutherland's formula)	3.74437E-07 lbf.s/ft
Reynolds Number (Re)	3992840.254
Launch Height	7 m
Launch Velocity (V0)	5.25 m/s
Launch Acceleration	0.3 m/s ²
Launch Force	0.099 kg*m / s ²

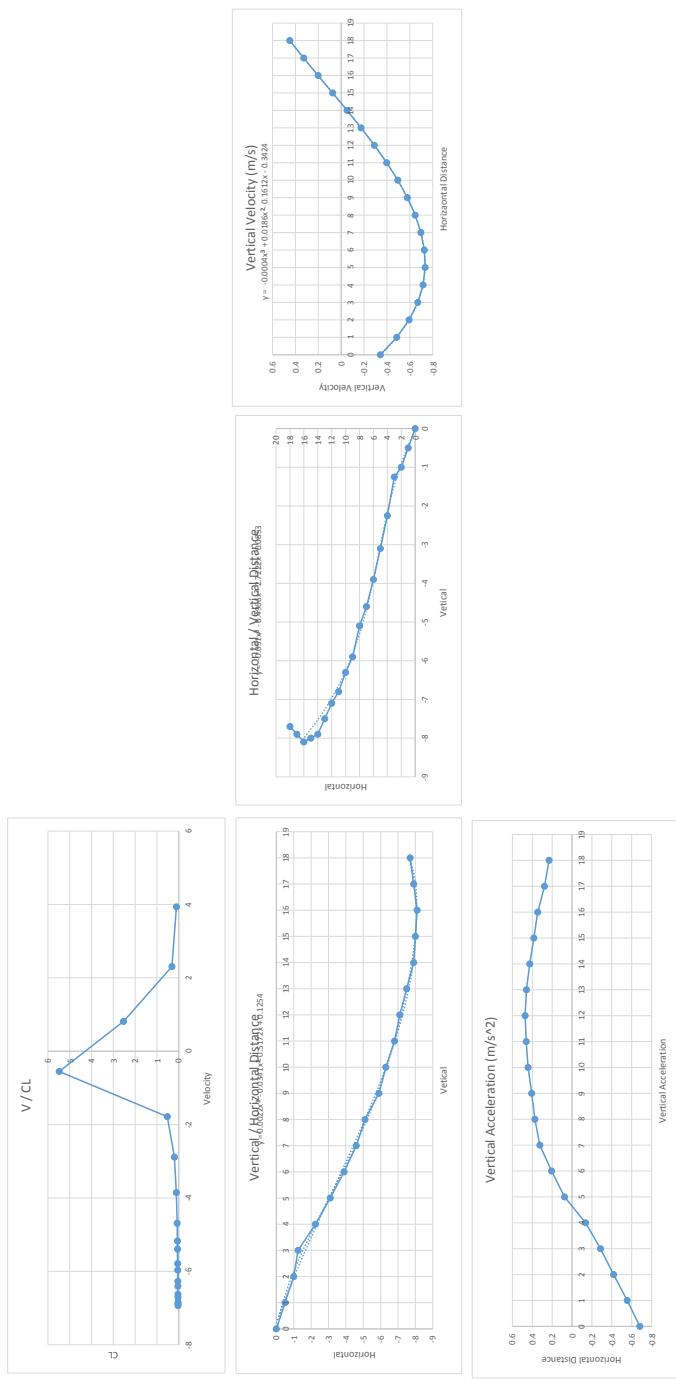

Lift	Max L/D	Max glide	0 m	0 deg	Incidence of the wing
I _{inc}	-4.5 deg				
I _{inc}	0.111 /deg				
e _w	1 -	span efficiency of the wing			
AR	1 -	Aspect ratio			CAUSE OF LOW CL
λ _w	0 -	Taper ratio			
λ _w	0.036721303 / deg	Clalpha of squirrel			
CL0	0.165245861	Zero lift coefficient			

Drag	C _{drag}	0.006 -	Miscellaneous drag
Location of maximum thickness (l/c)max	0.5		
Thickness ratio (l/c)l	0.15		
Skin Friction coefficient	0.003539772	ASSUMPTION	$c_f = \frac{0.074}{Re^{0.2}}$
Interference Factor	1		
Form Factor	0.778235851		
Max thickness sweep angle	0		
Induced drag constant (K)	0.318309886	VERY HIGH	
C _{min}	0.130846421	Minimum drag coefficient	
Range	8.835892236 m		

NOTES
The Liebeck aerofoil ($C_L = 3.06$ and $C_D = 0.005$), close example of the aerodynamics of *Glaucomys sabrinus*.

$$From\ Equation\ (1.45): \quad C_{L\alpha} = \frac{2\pi}{(1 + \frac{2}{AR})}$$

$$C_L = \frac{2W}{\rho u^2 S}$$


From Ballouz et al 2011. J R Soc Interface 10: 20120794

30% Modified

LIFT GENERATED BY WING

α	CL/Alpha	CD/Alpha	L/D	Sink Rate (m)	Lift (lb)	Drag (lb)
-10	-0.20197	-6.29797	0.032069	#NUM!	-0.021342103	0.065513545
-9.5	-0.18361	-5.1437	0.035695	#NUM!	-0.019401912	0.5453541093
-9	-0.16525	-4.1297	0.040014	#NUM!	-0.017461721	0.43639061
-8.5	-0.14689	-3.2472	0.045234	#NUM!	-0.015521529	0.34135723
-8	-0.12852	-2.48743	0.05167	#NUM!	-0.013581338	0.262850059
-7.5	-0.11016	-1.84163	0.059819	#NUM!	-0.01164147	0.194670744
-7	-0.0918	-1.30103	0.070562	#NUM!	-0.009700956	0.137480906
-6.5	-0.07344	-0.85685	0.085712	#NUM!	-0.007706765	0.090544672
-6	-0.05508	-0.50035	0.110088	#NUM!	-0.005820574	0.052872167
-5.5	-0.03672	-0.22747	0.164863	#NUM!	-0.003880382	0.023537021
-5	-0.01836	-0.01526	0.209592	#NUM!	-0.001940191	0.00612859
-4.5	0	0.130846	0	#DIV/0!	0	0.01826692
-4	0.018361	0.224356	0.081837	359.7325289	0.001940191	0.023708005
-3.5	0.036721	0.274034	0.134003	155.3453997	0.003880382	0.028957452
-3	0.055082	0.288645	0.19083	89.06820469	0.005820574	0.050514047
-2.5	0.073443	0.276956	0.265178	55.50878143	0.007706765	0.029266243
-2	0.091803	0.247734	0.370572	35.2807564	0.009700956	0.021678333
-1.5	0.110164	0.209746	0.525227	22.882683	0.01164147	0.02216405
-1	0.128525	0.171757	0.748293	14.86992184	0.013581338	0.01814976
-0.5	0.146881	0.142535	0.905191	10.1001593	0.015521529	0.015061856
0	0.165245861	0.112535	1.070159	7.770000000000001	0.017472121	0.012500000000000002
0.5	0.18361	0.082057	1.262277	5.76010766	0.021342103	0.005700457
1	0.20197	0.05135	1.035015	5.76010766	0.021342103	0.005700457
1.5	0.220328	0.028645	0.7613119	11.13362559	0.023382294	0.005051407
2	0.238688	0.043754	0.54902	14.8720119	0.025223485	0.054590498
2.5	0.257049	0.042229	0.40245	19.45799747	0.027162677	0.06786512
3	0.27545	0.091837	0.299411	25.38722747	0.029102688	0.057920027
3.5	0.29377	0.1276344	0.230166	31.9763596	0.031043059	0.134872771
4	0.312131	0.2261122	0.146163	47.4740567	0.034923441	0.238935343
4.5	0.330492	0.270517	0.0818147	39.5726489	0.03293825	0.181890905
5	0.348852	0.296025	0.120007	56.27877515	0.036863632	0.307178158
5.5	0.367213	0.366694	0.101408	56.27877515	0.038803824	0.387463822
6	0.385744	0.454915	0.084756	75.79608767	0.040744015	0.480718709
6.5	0.403934	0.563195	0.072603	86.44330967	0.042684206	0.484567919
7	0.422295	0.671459	0.062865	97.64593999	0.044624397	0.709841644
7.5	0.440656	0.802755	0.054939	109.3804095	0.046456588	0.847562437
8	0.459016	0.948149	0.04841	121.6253735	0.048504779	1.005197946
8.5	0.477358	1.09215	0.042392	131.6253735	0.050187142	1.134472773
9	0.495738	1.2125	0.038392	147.5726203	0.052385162	1.364478539
9.5	0.514098	14.895959	0.034504	161.4240503	0.054532535	1.574455691
10	0.532459	17.07954	0.031175	175.3558676	0.056265544	1.804814589
10.5	0.55082	19.46112	0.028390	189.0095999	0.058025735	2.056479268
11	0.56931	22.0531	0.02581	204.8652662	0.060145927	2.3303769
11.5	0.587541	24.86425	0.02363	220.2376331	0.062086118	2.627433858
12	0.605091	27.90333	0.021714	236.0077143	0.064026309	2.948576515
12.5	0.624262	31.1791	0.02002	252.1658815	0.0659646	3.294731245
13	0.642623	34.70334	0.018518	268.703148	0.067906691	3.666824422
13.5	0.661094	38.47458	0.017179	285.6111042	0.069846882	4.056782413
14	0.679344	42.51427	0.015979	302.8881858	0.071178074	4.452531599
14.5	0.697351	46.74252	0.014549	320.8261265	0.072942625	4.942531948
15	0.715055	50.1452	0.013187	342.8249716	0.074652905	5.435045005
15.5	0.734426	56.29531	0.013046	356.7987794	0.077607547	5.948790033
16	0.752787	61.47433	0.012346	375.4507570	0.079547838	6.459567715
16.5	0.771147	66.95837	0.011517	394.419692	0.081880803	7.034858453
17	0.789058	72.75829	0.010851	413.731319	0.0834221	7.685818622
17.5	0.807869	78.8832	0.010241	433.3612658	0.085368412	8.337544593
18	0.826229	85.34186	0.009681	453.2987126	0.087308603	9.018172774
18.5	0.84454	92.14179	0.009166	473.544788	0.089248794	9.736729435
19	0.862951	99.29329	0.008691	494.09484	0.091188985	10.49234105
19.5	0.881311	106.8024	0.008252	514.9441837	0.093129177	11.28593397
20	0.898967	114.84866	0.007845	536.0892616	0.095096368	12.1843455
20.5	0.918033	122.9358	0.0074646	557.5252818	0.097009559	12.99076917
21	0.936393	131.5767	0.007117	579.248561	0.098949575	13.93086421
21.5	0.954761	141.2292	0.0067809	59.8726489	0.100849575	14.4472773
22	0.973115	150.5080	0.006485	123.5419296	0.102830132	15.95694101
22.5	0.991475	150.9015	0.006201	646.4041917	0.104703234	16.996757533
23	1.009836	170.173	0.005934	668.9408297	0.106705151	17.98237595
23.5	1.028196	180.874	0.005685	692.0642629	0.108650706	19.11361666
24	1.046557	192.0234	0.005455	715.418988	0.110590897	20.2902801
24.5	1.064918	203.5999	0.005253	739.0594943	0.112531088	21.5163639
25	1.083278	215.6422	0.005022	762.9515687	0.114471228	22.78716417
25.5	1.101639	228.1492	0.004828	787.1060309	0.116411471	24.10878973
26	1.12	241.1296	0.004643	811.5155897	0.118351662	25.48043942
26.5	1.138351	254.5921	0.004471	836.1775893	0.120291853	26.303964
27	1.156721	268.5455	0.004307	861.089455	0.122232044	28.37751674
27.5	1.175055	287.1452	0.004152	886.8261269	0.124212325	29.95111
28	1.193427	306.5680	0.004005	91.6280819	0.126124204	3.48507172
28.5	1.211803	313.4391	0.003865	93.7296315	0.128052618	33.12197313
29	1.230164	320.4439	0.003734	96.31867033	0.130929809	34.5127153
29.5	1.248524	345.9835	0.003603	98.9118491</		

Horizontal Distance (m)	Vertical Distance (m)	Vertical Velocity (m/s)	Vertical Acceleration (m/s ²)	Horizontal Velocity (m/s)	Horizontal Acceleration (m/s ²)
0	0	0.000000	0.000000	0.000000	0.000000
1	0	-0.5172	0.0026268	0.000000	0.000000
2	0	-5.788	0.0096798	0.000000	0.000000
3	0	-6.722	0.004278	0.000000	0.000000
4	0	-6.624	0.0080883	0.000000	0.000000
5	0	-6.646	0.0056774	0.000000	0.000000
6	0	-6.632	0.004774	0.000000	0.000000
7	0	-6.688	0.00522	0.000000	0.000000
8	0	-6.722	0.0070951	0.000000	0.000000
9	0	-6.604	0.003745	0.000000	0.000000
10	0	-5.965	0.0046778	0.000000	0.000000
11	0	-6.8	0.005774	0.000000	0.000000
12	0	-7.4	0.0076032	0.000000	0.000000
13	0	-8.2	0.0120216	0.000000	0.000000
14	0	-7.9	0.0090101	0.000000	0.000000
15	0	-8.1	-0.552	0.025029	0.000000
16	0	-8.1	0.812	0.483869	0.000000
17	0	-7.9	2.308	0.33391	0.000000
18	0	-7.7	3.936	0.0107861	0.000000
Horizontal Distance (m)	Vertical Distance (m)	Vertical Velocity (m/s)	Vertical Acceleration (m/s ²)	Horizontal Velocity (m/s)	Horizontal Acceleration (m/s ²)
0	0	0	0	0	0
1	0	-0.5172	-0.0026268	0	0
2	0	-5.788	-0.0096798	0	0
3	0	-6.722	-0.004278	0	0
4	0	-6.624	-0.0080883	0	0
5	0	-6.646	-0.0056774	0	0
6	0	-6.632	-0.004774	0	0
7	0	-6.688	-0.00522	0	0
8	0	-6.722	-0.0070951	0	0
9	0	-6.604	-0.003745	0	0
10	0	-5.965	-0.0046778	0	0
11	0	-6.8	-0.005774	0	0
12	0	-7.4	-0.0076032	0	0
13	0	-8.2	-0.0120216	0	0
14	0	-7.9	-0.0090101	0	0
15	0	-8.1	-0.552	0.025029	0.000000
16	0	-8.1	0.812	0.483869	0.000000
17	0	-7.9	2.308	0.33391	0.000000
18	0	-7.7	3.936	0.0107861	0.000000

